Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs
نویسندگان
چکیده
BACKGROUND Mesenchymal stromal cells (MSCs) have an inherent migratory capacity towards tumor tissue in vivo. With the future objective to quantify the tumor homing efficacy of MSCs, as first step in this direction we investigated the use of inorganic nanoparticles (NPs), in particular ca. 4 nm-sized Au NPs, for MSC labeling. Time dependent uptake efficiencies of NPs at different exposure concentrations and times were determined via inductively coupled plasma mass spectrometry (ICP-MS). RESULTS The labeling efficiency of the MSCs was determined in terms of the amount of exocytosed NPs versus the amount of initially endocytosed NPs, demonstrating that at high concentrations the internalized Au NPs were exocytosed over time, leading to continuous exhaustion. While exposure to NPs did not significantly impair cell viability or expression of surface markers, even at high dose levels, MSCs were significantly affected in their proliferation and migration potential. These results demonstrate that proliferation or migration assays are more suitable to evaluate whether labeling of MSCs with certain amounts of NPs exerts distress on cells. However, despite optimized conditions the labeling efficiency varied considerably in MSC lots from different donors, indicating cell specific loading capacities for NPs. Finally, we determined the detection limits of Au NP-labeled MSCs within murine tissue employing ICP-MS and demonstrate the distribution and homing of NP labeled MSCs in vivo. CONCLUSION Although large amounts of NPs improve contrast for imaging, duration and extend of labeling needs to be adjusted carefully to avoid functional deficits in MSCs. We established an optimized labeling strategy for human MSCs with Au NPs that preserves their migratory capacity in vivo.
منابع مشابه
Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions
Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...
متن کاملTumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs
Background: Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. Objective: To characterize and compare the phenotype and cytokines of adipose derived MSCs (...
متن کاملOptimal Labeling Dose, Labeling Time, and Magnetic Resonance Imaging Detection Limits of Ultrasmall Superparamagnetic Iron-Oxide Nanoparticle Labeled Mesenchymal Stromal Cells
Background. Regenerative therapy is an emerging treatment modality. To determine migration and retention of implanted cells, it is crucial to develop noninvasive tracking methods. The aim was to determine ex vivo magnetic resonance imaging (MRI) detection limits of ultrasmall superparamagnetic iron-oxide (USPIO) labeled mesenchymal stromal cells (MSCs). Materials and Methods. 248 gel-phantoms w...
متن کاملIsolation, characterization and transduction of canine bone marrow-derived mesenchymal stem cells (cBM-MSCs)
BACKGROUND: Stem cell therapy in small animal medicineis still in its infancy and few in vitro and in vivo research projectsregarding animal Mesenchymal Stem Cells (MSCs) have beencarried out. On the other hand, Cell tracking is the first step of thecell-based therapies and is essential to recognize cell fate posttransplantation. OBJECTIVES: The aim of this study was toisolate, characterize, an...
متن کاملMesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood
Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34+ cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apo...
متن کامل